\(\int \frac {b+2 c x}{(d+e x)^{3/2} (a+b x+c x^2)^{3/2}} \, dx\) [1648]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 559 \[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}}+\frac {4 e^2 (2 c d-b e) \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {d+e x}}-\frac {2 \sqrt {2} \sqrt {b^2-4 a c} e (2 c d-b e) \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}}+\frac {2 \sqrt {2} \sqrt {b^2-4 a c} e \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}} \]

[Out]

-2*((-4*a*c+b^2)*(-b*e+c*d)-c*(-4*a*c+b^2)*e*x)/(-4*a*c+b^2)/(a*e^2-b*d*e+c*d^2)/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(
1/2)+4*e^2*(-b*e+2*c*d)*(c*x^2+b*x+a)^(1/2)/(a*e^2-b*d*e+c*d^2)^2/(e*x+d)^(1/2)-2*e*(-b*e+2*c*d)*EllipticE(1/2
*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+
b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b^2)^(1/2)*(e*x+d)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/(a*e^2-b*d
*e+c*d^2)^2/(c*x^2+b*x+a)^(1/2)/(c*(e*x+d)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)+2*e*EllipticF(1/2*((b+2*c*x
+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)
)))^(1/2))*2^(1/2)*(-4*a*c+b^2)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)*(c*(e*x+d)/(2*c*d-e*(b+(-4*a*c+b^2
)^(1/2))))^(1/2)/(a*e^2-b*d*e+c*d^2)/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 559, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {836, 848, 857, 732, 435, 430} \[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\frac {2 \sqrt {2} e \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\sqrt {d+e x} \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}-\frac {2 \sqrt {2} e \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^2 \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c e x \left (b^2-4 a c\right )\right )}{\left (b^2-4 a c\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}+\frac {4 e^2 \sqrt {a+b x+c x^2} (2 c d-b e)}{\sqrt {d+e x} \left (a e^2-b d e+c d^2\right )^2} \]

[In]

Int[(b + 2*c*x)/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*((b^2 - 4*a*c)*(c*d - b*e) - c*(b^2 - 4*a*c)*e*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]*Sq
rt[a + b*x + c*x^2]) + (4*e^2*(2*c*d - b*e)*Sqrt[a + b*x + c*x^2])/((c*d^2 - b*d*e + a*e^2)^2*Sqrt[d + e*x]) -
 (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*e*(2*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*Ellip
ticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d
- (b + Sqrt[b^2 - 4*a*c])*e)])/((c*d^2 - b*d*e + a*e^2)^2*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*
e)]*Sqrt[a + b*x + c*x^2]) + (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*e*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c]
)*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[
b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/((c*d^2 - b*d*e + a*e^2
)*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)), Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2
])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 848

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}}-\frac {2 \int \frac {\frac {1}{2} \left (b^2-4 a c\right ) e (3 c d-2 b e)-\frac {1}{2} c \left (b^2-4 a c\right ) e^2 x}{(d+e x)^{3/2} \sqrt {a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )} \\ & = -\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}}+\frac {4 e^2 (2 c d-b e) \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {d+e x}}+\frac {4 \int \frac {-\frac {1}{4} c \left (b^2-4 a c\right ) e \left (3 c d^2-e (b d+a e)\right )-\frac {1}{2} c \left (b^2-4 a c\right ) e^2 (2 c d-b e) x}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )^2} \\ & = -\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}}+\frac {4 e^2 (2 c d-b e) \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {d+e x}}-\frac {(2 c e (2 c d-b e)) \int \frac {\sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx}{\left (c d^2-b d e+a e^2\right )^2}+\frac {(c e) \int \frac {1}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2} \\ & = -\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}}+\frac {4 e^2 (2 c d-b e) \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {d+e x}}-\frac {\left (2 \sqrt {2} \sqrt {b^2-4 a c} e (2 c d-b e) \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {a+b x+c x^2}}+\frac {\left (2 \sqrt {2} \sqrt {b^2-4 a c} e \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}} \\ & = -\frac {2 \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}}+\frac {4 e^2 (2 c d-b e) \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {d+e x}}-\frac {2 \sqrt {2} \sqrt {b^2-4 a c} e (2 c d-b e) \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right )^2 \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}}+\frac {2 \sqrt {2} \sqrt {b^2-4 a c} e \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x} \sqrt {a+b x+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 14.46 (sec) , antiderivative size = 672, normalized size of antiderivative = 1.20 \[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\frac {-2 a b e^3+2 a c e^2 (3 d+e x)-2 b^2 e^2 (d+2 e x)+2 b c e \left (2 d^2+3 d e x-2 e^2 x^2\right )+2 c^2 d \left (-d^2+d e x+4 e^2 x^2\right )+4 e^2 (-2 c d+b e) (a+x (b+c x))-\frac {i \sqrt {2} (d+e x)^{3/2} \sqrt {1-\frac {2 \left (c d^2+e (-b d+a e)\right )}{\left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt {1+\frac {2 \left (c d^2+e (-b d+a e)\right )}{\left (-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \left ((-2 c d+b e) \left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) E\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right )|-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )+\left (3 c^2 d^2+b e \left (b e-\sqrt {\left (b^2-4 a c\right ) e^2}\right )+c \left (-3 b d e-a e^2+2 d \sqrt {\left (b^2-4 a c\right ) e^2}\right )\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right ),-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )\right )}{\sqrt {\frac {c d^2+e (-b d+a e)}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}}{\left (c d^2+e (-b d+a e)\right )^2 \sqrt {d+e x} \sqrt {a+x (b+c x)}} \]

[In]

Integrate[(b + 2*c*x)/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*a*b*e^3 + 2*a*c*e^2*(3*d + e*x) - 2*b^2*e^2*(d + 2*e*x) + 2*b*c*e*(2*d^2 + 3*d*e*x - 2*e^2*x^2) + 2*c^2*d*
(-d^2 + d*e*x + 4*e^2*x^2) + 4*e^2*(-2*c*d + b*e)*(a + x*(b + c*x)) - (I*Sqrt[2]*(d + e*x)^(3/2)*Sqrt[1 - (2*(
c*d^2 + e*(-(b*d) + a*e)))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[1 + (2*(c*d^2 + e*(-(b*d)
 + a*e)))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*((-2*c*d + b*e)*(2*c*d - b*e + Sqrt[(b^2 - 4*a
*c)*e^2])*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])
/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))] + (3*c^2
*d^2 + b*e*(b*e - Sqrt[(b^2 - 4*a*c)*e^2]) + c*(-3*b*d*e - a*e^2 + 2*d*Sqrt[(b^2 - 4*a*c)*e^2]))*EllipticF[I*A
rcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*
c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))]))/Sqrt[(c*d^2 + e*(-(b*d) + a*e
))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/((c*d^2 + e*(-(b*d) + a*e))^2*Sqrt[d + e*x]*Sqrt[a + x*(b + c*x)
])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1285\) vs. \(2(503)=1006\).

Time = 4.61 (sec) , antiderivative size = 1286, normalized size of antiderivative = 2.30

method result size
elliptic \(\text {Expression too large to display}\) \(1286\)
default \(\text {Expression too large to display}\) \(2977\)

[In]

int((2*c*x+b)/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

((e*x+d)*(c*x^2+b*x+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)*(-2*c*e*(2*e*(b*e-2*c*d)/(a^2*e^4-2*a*b*d*e^3+
2*a*c*d^2*e^2+b^2*d^2*e^2-2*b*c*d^3*e+c^2*d^4)*x^2-(a*c*e^2-2*b^2*e^2+3*b*c*d*e+c^2*d^2)/(a^2*e^4-2*a*b*d*e^3+
2*a*c*d^2*e^2+b^2*d^2*e^2-2*b*c*d^3*e+c^2*d^4)/c*x+(a*b*e^3-3*a*c*d*e^2+b^2*d*e^2-2*b*c*d^2*e+c^2*d^3)/(a^2*e^
4-2*a*b*d*e^3+2*a*c*d^2*e^2+b^2*d^2*e^2-2*b*c*d^3*e+c^2*d^4)/c/e)/((x^3+(b*e+c*d)/c/e*x^2+(a*e+b*d)/c/e*x+a*d/
c/e)*c*e)^(1/2)+2*((3*a*c*e^2-4*b^2*e^2+7*b*c*d*e-c^2*d^2)*e/(a^2*e^4-2*a*b*d*e^3+2*a*c*d^2*e^2+b^2*d^2*e^2-2*
b*c*d^3*e+c^2*d^4)-2*(a*c*e^2-2*b^2*e^2+3*b*c*d*e+c^2*d^2)*e/(a^2*e^4-2*a*b*d*e^3+2*a*c*d^2*e^2+b^2*d^2*e^2-2*
b*c*d^3*e+c^2*d^4))*(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)*((x-
1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(
-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*EllipticF(((x+d/e)/(
d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/
2))))^(1/2))+4*(b*e-2*c*d)*c*e^2/(a^2*e^4-2*a*b*d*e^3+2*a*c*d^2*e^2+b^2*d^2*e^2-2*b*c*d^3*e+c^2*d^4)*(d/e-1/2*
(b+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2))
)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4*a*c+b^2)^(1/2
))/c))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*((-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))*EllipticE((
(x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c
+b^2)^(1/2))))^(1/2))+1/2/c*(-b+(-4*a*c+b^2)^(1/2))*EllipticF(((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/
2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 1071, normalized size of antiderivative = 1.92 \[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((2*c*x+b)/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

-2/3*((5*a*c^2*d^3 - 5*a*b*c*d^2*e + (2*a*b^2 - 3*a^2*c)*d*e^2 + (5*c^3*d^2*e - 5*b*c^2*d*e^2 + (2*b^2*c - 3*a
*c^2)*e^3)*x^3 + (5*c^3*d^3 - 3*(b^2*c + a*c^2)*d*e^2 + (2*b^3 - 3*a*b*c)*e^3)*x^2 + (5*b*c^2*d^3 - 5*(b^2*c -
 a*c^2)*d^2*e + 2*(b^3 - 4*a*b*c)*d*e^2 + (2*a*b^2 - 3*a^2*c)*e^3)*x)*sqrt(c*e)*weierstrassPInverse(4/3*(c^2*d
^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2
*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e)) - 6*(2*a*c^2*d^2*e - a*b*c*d*e^2 + (2*c^3*d*e
^2 - b*c^2*e^3)*x^3 + (2*c^3*d^2*e + b*c^2*d*e^2 - b^2*c*e^3)*x^2 + (2*b*c^2*d^2*e - a*b*c*e^3 - (b^2*c - 2*a*
c^2)*d*e^2)*x)*sqrt(c*e)*weierstrassZeta(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d
^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), weierstrassPInverse(4/3*(c^
2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 +
 (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e))) + 3*(c^3*d^3 - 2*b*c^2*d^2*e + a*b*c*e^3
+ (b^2*c - 3*a*c^2)*d*e^2 - 2*(2*c^3*d*e^2 - b*c^2*e^3)*x^2 - (c^3*d^2*e + 3*b*c^2*d*e^2 - (2*b^2*c - a*c^2)*e
^3)*x)*sqrt(c*x^2 + b*x + a)*sqrt(e*x + d))/(a*c^3*d^5 - 2*a*b*c^2*d^4*e - 2*a^2*b*c*d^2*e^3 + a^3*c*d*e^4 + (
a*b^2*c + 2*a^2*c^2)*d^3*e^2 + (c^4*d^4*e - 2*b*c^3*d^3*e^2 - 2*a*b*c^2*d*e^4 + a^2*c^2*e^5 + (b^2*c^2 + 2*a*c
^3)*d^2*e^3)*x^3 + (c^4*d^5 - b*c^3*d^4*e + b^3*c*d^2*e^3 + a^2*b*c*e^5 - (b^2*c^2 - 2*a*c^3)*d^3*e^2 - (2*a*b
^2*c - a^2*c^2)*d*e^4)*x^2 + (b*c^3*d^5 + b^3*c*d^3*e^2 - a^2*b*c*d*e^4 + a^3*c*e^5 - (2*b^2*c^2 - a*c^3)*d^4*
e - (a*b^2*c - 2*a^2*c^2)*d^2*e^3)*x)

Sympy [F]

\[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int \frac {b + 2 c x}{\left (d + e x\right )^{\frac {3}{2}} \left (a + b x + c x^{2}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((2*c*x+b)/(e*x+d)**(3/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral((b + 2*c*x)/((d + e*x)**(3/2)*(a + b*x + c*x**2)**(3/2)), x)

Maxima [F]

\[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int { \frac {2 \, c x + b}{{\left (c x^{2} + b x + a\right )}^{\frac {3}{2}} {\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((2*c*x+b)/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((2*c*x + b)/((c*x^2 + b*x + a)^(3/2)*(e*x + d)^(3/2)), x)

Giac [F]

\[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int { \frac {2 \, c x + b}{{\left (c x^{2} + b x + a\right )}^{\frac {3}{2}} {\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((2*c*x+b)/(e*x+d)^(3/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate((2*c*x + b)/((c*x^2 + b*x + a)^(3/2)*(e*x + d)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {b+2 c x}{(d+e x)^{3/2} \left (a+b x+c x^2\right )^{3/2}} \, dx=\int \frac {b+2\,c\,x}{{\left (d+e\,x\right )}^{3/2}\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \]

[In]

int((b + 2*c*x)/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(3/2)),x)

[Out]

int((b + 2*c*x)/((d + e*x)^(3/2)*(a + b*x + c*x^2)^(3/2)), x)